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I. INrRODUCTION

With the widespread use of numerical (hydro-) codes to describe the behavior of bodies impacting

at high velocity, it is vital that code developers and users be familiar with the various numerical

models in the codes. All too often, cffort is concentrated on the "numerics" of a code, such as

integration and discretization techniques, artificial viscosity formulations, mass lumping and pressure

averagi ng techniques, and mass advection schemes. with the same rigor being absent when considering

the "physics" of the code.

Because code development involves significant effort, it is common for codes to evolve or be

passed down directly, rather than be written from the ground up. With this sort of evolution, it is
possible to avoid "reinventing the wheel." Unfortunately, this mentality, if taken to the extreme,

precludes the ability to redesign the "wheel" and can result in an incompatible combination of "wheel"

and code "e-chicle." Common problems associated with material model evolution are enumerated

below:

(1) Many materia" models are based on assumptions and limitations which are often not passed on
with the model. Thus, material models which are valid only for a particular class of problems

Ce.g. small compression, ductile behavior, etc.) can be erroneously applied to more general

classes of problems.

(2) Goodness of a material model is often judged on its ability to solve a particular set of
problems, rather than on adherance to fundamental principles. Such heuristic approaches

(e.g., use of non-associated flow rules) can be exercised with caution but often become

institutionalized and taken as fact by an unknowing community.

(3) Many new material models are derived by applying ad hoc modifications to older models,

rather than rederiving the models from basic principles. When this is done carelessly,

conflicting assumptions or limitations can render such models invalid.

(4) Material libraries tend to take on a life of their own and are passed down from generation to

generation without the accompanying experimental data used to generate those libraries.



When this happens, material data are often used under conditions (e.g., strain rates, pressures,

etc.) where those data arc not valid.

One aspect of material modeling which is extremely important to impact codes, and to which all of

the abovementioned problems are relevant, is the equation of state (EOS). In this report, equations of

state for use in impact codes are discussed in general terms, with the Mie-Grdlneisen equation of state

used for specific illustrative purposes since it is the workhorse EOS of the current generation of

hydrodynamic wave codes. Basic derivations, assumptions, and limitations of applicability are all

discussed, with the prime focus being on equation-of-state stability.

2. THERMODYNAMIC STATES AND THE EQUATION OF STATE

To completely describe the volumetric behavior of a material, the values of the thermodynamic

state variables (i.e., the thermodynamic coordinates) are needed for every state of the material.

Thermodynamic state variables are properties which are only dependent on the state of a material and

not on the path taken to arrive at that state. Examples of typical thermodynamic state variables

include pressure and temperature, as well as specific volume, internal energy, enthalpy, entropy, etc.

To describe the state of a simple substance, excluding such phenomena as phase change,

dissociation, or electromagnetic work, a knowledge of the material's pressure, as a function of density

and temperature, is sufficient to completely describe the state of a material. In general, these

thermodynamic state data are related in one of three forms.

Tabulated experimental data is one popular form of representing thermodynamic state data. Steam

tables are probably the most widely used form of tabulated thermodynamic data. Data are tabulated

over a large range of states, and interpolation becomes necessary to obtain data between the tabulated

state points.

Of a similar nature to tabulated thermodynamic data Is graphical thermodynamic data. The

Mollier diagram, which graphically represents the states of water In Its various phases, Is the classic

example of graphically rcprescnted thermodynamic data. To the experienced user, graphical state

tables provide a fast, accurate means of evaluating the change In state variables, When something Is
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known about the thermodynamic process in question. Like tabulated data, extensive experimental

testing is necessary to generate the data found in graphical thermodynamic state tables.

The third, and possibly most common, way to represent thermodynamic state data is in analytical

form, and is referred to as an equation of state. Traditionally, the EOS expresses pressure in terms of

density and temperature. Describing material by way of an EOS has many advantages. The form is

compact, much more so than exhaustive tabulated data. An EOS may be mathematically codified, thus

making it the most attractive on the basis of programming considerations. Additionally, the

interrelationship of state variables may be mathematically derived, from the EOS, thus providing a

more fundamental understanding of the thermodynamic phenomena at work.

On the other hand, equations of state can suffer from severe deficiencies, which can make their use

prone to error. Invariably, equations of state are formulated, with a host of inherent assumptions about

the nature of the material behavior. Common examples of such assumptions include constant specific

heats, ideal gas, etc. While these assumptions may be valid over a smaU domain of possible states,

they are often poor at describing the material under extreme thermodynamic conditiotts like high/low

pressure, phase change, and the like. This limitation, in and of itself, is not bad. However, those who

use these equations are not always cognizant of the conditions under which a given EOS is valid.

Thus, equations of state may be used in a thermodynamic domain where the EOS parameters are no

longer valid. Also, there can be a problem with EOS forms which, though capturing the essence of

the material behavior, suffer from "higher order" inconsistencies that only manifest themselves

obliquely.

When it comes to hydrocode modeling of material deformation, where the EOS is just a means to

a computational end, sophistocated equations of state, though available in the literature, are rarely used

because of simplicity (i.e., efficiency) considerations. This focus on computational simplicity merely

serves to enhance the likelihood of EOS failure in hydrocode computations.

All equations of state need data with which to drive themselves. In the case of the Mie-Grlneisen

EOS, as used in today's hydrocodes, thermodynamic state variables an: expressed relative to those

states found along an experimentally determined pressure-volume curve which, for the case of impact

data. is usually chosen as the Hugoniot curve. Thus, before the Mie-OrUneisen EOS can be discussca
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in detail, the reader must acquire an appreciation of the Ilugoniot and the thermodynamic process of

shock transition.

3. SHOCK TRANSITION: A THERMODYNAMIC PROCESS

A shock is a volumetric disturbance vhich travels faster, in a medium, than the bulk speed of

sound (i.e., sonic velocity) characteristic to the state of that medium. A shock is characterized by a

shock front, which itself is very thin (thickness on the order of micrometers), and is analytically

idealized as a discontinuity in physical properties such as density, pressure, and energy. The thinness

of the shock coupled with the high velocity of the shock front ensure the adiabatic nature of shock

transition. Large amplitude disturbances are not necessarily shocks if the thickness of the disturbance

is relatively large. Correspondingly, the amplitude of a shock need not be necessarily large as long as

the disturbance is traveling faster than the sonic velocity.

Shock transition may be thought of as an adiabatic irreversible thermodynamic process which

permits the state of a material to be altered in a fashion similar to isentropic, isothermal, isochoric,

isenthalpic, and isobaric processes. Whereas all of these other thermodynamic processes are

characterized by the constancy of a particular state variable, the process of shock transition is

characterized only by the existence of a shock wave. No thermodynamic state variables remain

constant during shock transition. Nonetheless, the shock transition process can be as well

characterized as any of the other thermodynamic processes, as will be shown from the following

derivation of the basic shock relations.

4. BASIC SHOCK EQUATIONS

Consider a shock disturbance traveling at velocity U, into a stationary medium, with density,

pressure, and specific internal energy of p,, p,. and E0 , respectively. Behind the shock, the material

has acquired a particle velocity, given by up, traveling in the same direction as the shock disturbance.

The density, pressure, and specific internal energy are p, p, and E, respectively. This situation is

depicted in the Laboratory Frame diagram of Figure 1. If an observer could be situated right on the

shock wave, so that the shock were to appear stationary, the situation would appear like that depicted
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in the Stationary Shock Frame diagram. The continuity, momentum, and energy relations are derived

below by considering an infinitesimally thin contol volume, which fluxes mass dM, over a time

increment dt, which straddics the shock front, in the stationary shock frame. The control volume

projects unit area A onto the shock front.

CONTINUITY:

Mass In poUA dt

Mass Out: p (U, - A di

p~U,
Up u,

Or, in terms of compression t:

ooo! up
; where I - 1

MOMENTUM:

Decelerative Impulse: (p -P) A dt

Momentum Decrease: dM [U, - (U,-up)] = (p. U, A d) [1U, - (U,-yu]

p-p.=poU,u.; for p°-O, p=p.Uup

EN"ERGY:

Energy In:

Internal Energy In E, dM = E. (pU. A dt)

Kinetic Energy In : 112 dM U, = 1/2 (p. U,, A do U

Net Work on Control Volume: IF dx = (p, A) (U, di) - (p A) [(U,.u) di)

Energy Out:
Internal Energy Out E r dM I. (pE U, A dt)

6



Kinetic Energy Out • 112 dM u= 112 (p. U, A dt) (U5-u)
2

Internal Energy Accumulated: 0

F - E, = 1/2 (p + po)(l/po - i/p); for p. 0, E -E. = 112 p(l/p - lip)

Or. in terms of compression I:

E-E, = (P;P) t' forp.-0, E-E o -  P 9
2p. (I + gt) 2p. (I + Vt)

5. THE IlUGONIOT

The momentum relation derived above expresscs pressure in terms of shock and particle velocities,

Us and up, respectively. If the nature of the shock or particle velocity relationships are explicitly

known, then the pressure can be expressed in terms of specific volume v, density p, or alternately,

compression p. This pressure-volume relationship for the shock compression process is called the

Rankine-Ilugoniot equation-or more simply, the Hugoniot-and is the locus of states which can be

achieved through the shock transition of a material from a given (p,, v,) state.

It is vital to note that the Hugoniot does not represent the actual path of states through which a

material progresses, when transitioning from the (p., vo) state to (p, v), but rather the locus of final

(p, v) states which can be achieved through shock transition. Also, since we know shock transition to

be a compressive proccess only, a particular Hugoniot curve has one endpoint: the pre-shocked

(p0 , v,) state. From this endpoint, the Hugoniot proceeds in the direction of increasing pressure and

decreasing volume.

Examining the shock energy relationship for the case of an infinitesimal shock, it is seen that

dE = -p0 dv, which exactly equals the reversible work that is done on the material during the

infinitesimal compression. This condition makes the process reversible adiabatic, thus isentropic. The

implicaion is that at its cndpoint, the Ilugoniot is tangent to the iscntropc through that point. Except
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at its endpoint however, the Hugoniot slope (with respect to dcnsity) is necessarily steeper than the
isentrope through a given point.

Unlike other thermodynamic processes, for example isentropic compression, where knowledge of a
~single state on an isentropic (p, v) curve is sufficient to completely describe that isenitropic curve,

knowledge of a state point on a Hugoniot curve is not sufficient to define the Hugoniot curve. That is

to say, there ar many (po, v,) states which can possibly shock transition to state (p, v). This is
idetical to saying that there are many 1-lugoniots through any state point, as we shall prove in the next
Section.

6. SOME PROPERTIES OF THE HUGONIOT

To prove the assertion that there is no unique Hugoniot through the state point (p, v), let us
assume the contrary and show an inconsistency. Consider the Hugoniot referenced to state (p,, v,)

(we will hereafter call this the (p0 , vo) Hugoniot) which goes through state point (p, v). , Consider also

another Hugoniot, referenced to state (P, v,), which also goes through state (p, v). If one assumes

that there is a unique Hugoniot which goes through the state (p, v), then one is forced to conclude that

both states (po, v,) and (P1, v,) lie along this unique Hugoniot. If (p, v,) is in fact on the (po, v,)

Hugoniot, then shock transition can theoretically occur from the state (p, v0) to (pl, v,).

To show the inconsistency which arises from this assumption, consider the changes in specific

internal energies which arise when shock transitioning from states (p, v,) to (p. v), from (p, , v,) to

(p. v) and also from (p, v ) to (P. v,).

E - E, 1/2 (p0 + p) (v, - v),

E - E, =112 (p1 + p) (v,. v)

El- E 1/2 (p. + p1 ) (y. - I

Subtracting the second two equations from the first should produce an identity, but it can be readily

seen that not all of the terms cancel:
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0= 1/2 [p, (v - v) + p (v0 - vI) - p, (v .

This can be reduced to:

(P] " P,) / (vo - vI) = (P - PI) I(v - v) .

Not only is this expression not an identity, but it will only reduce to a true statement if the Hugoniot

coincides with a Rayleigh line, which is line of constant slope in the (p, v) plane. Additionally,

thermodynamics tells us that there exists a local maxima of entropy along a Rayleigh line, where it is

tangent to an isentrope. Thus, the Hugoniot cannot possibly lie along a Rayleigh line, for to do so

would imply decreasing entropy with increasing shock strength as the shocked state moved beyond the

local entropy maxima on the Rayleigh line.

Thus. the inconsistency has been shown, and one can conclude that the assumption that both

(p0, v.) and (P,, v,) lie on the same unique Hugoniot must be false, even though the Hugoniots

originating at both these points intersect at the point (p, v).

A corollary to this point is that, if one were to proceed from state (p, v.) towards a specific

volume of v, by way of two shocks, the final pressure will not be the same as when specific

volume v is achieved through a single shock, since the new Hugoniot originating at the intermediate

shocked state will differ from original (p0, v.) Hugoniot. In the limit, if the specific volume v is

reached through an infinit, number of infinitesimal shocks, it should not be surprising that the path of

compression will lie along the isentrope through the original (p0, v.) point, since an infinitesimal sho,.k

was shown previously to be isentropic.

In practice, only a single Hugoniot is experimentally determined to characterize the behavior of a

material-that Hugoniot which has as its (p0 , v) state ambient conditions of pressure and specific

volume. Thus, references to "the" Hugoniot for a material refer to a particular "reference" Hugoniot

which has as its origin the ambient (p,, v,) state.

7. EXAMINATION OF SEVERAL HUGONIOT FORMS

7.1 Constant Sound Speed. Constant sound speed implies that all disturbances travel at the same

velocity, or

9



U = Co.

Determining the particle velocity from continuity gives

up = C0 (I - pjp).

It is clear that the particle velocity can never exceed the shock velocity and simultaneously satisfy

continuity, so the implication is that the maximum possible particle velocity is also the shock velocity

C,, and this only occurs as the shocked density becomes infinite. It should be clear from momentum

considerations, therefore, that the maximum pressure achievable in a constant sound speed medium is

p0 C0
2. Indeed, the relation is given by

(1 +p;)

7.2 The Ideal Gas Form. Much of the work done in thermodynamics is done on the assumption

that the working medium may be approximated as an ideal gas. Unfortunately, at large compressions,

materials do not generally behave in an ideal fashion. Nonetheless, we examine the Hugoniot form for

the sake of academic interest.

An ideal gas is one which obeys the EOS p/p = RT, where R is the gas constant, and T is the gas

temperature. Additionally, an ideal gas is assumed to have constant specific heats cp and c. Under

these conditons of idealness, E = c, T, and the EOS may be expressed as p/p = (R/c,) E. But

R = c - c, by definition, and the ratio c1 /c, is often expressed as y, so that

p = p (y - 1) E.

Cons dcr the shock energy equation, and eliminate energy terms from it by substituting the gamma law

from above. In that case,

PA P.Ph P = (p, +ph) (ip. - I/P)
p(Y- I) po(Y -1)

10



This may be solved for the Hugonio, pressure ph~, and expressed in compression form, by substituting

(I + li) for pip0, to give

-Y ( 1 ) -(Y - ) 0y-0

Exprcssed in a (p p) form, 1t becomes

ph -P, 2y l
2 - (y - 1) lt

ris Ilugoniot form is seen to approach infinite pressure when

p = /y- 1)

This limit, expressed in termns of dcnsity, is

Y -i

7.3 The Linear U.. u_ Formn. It has been empirically observed for many materials, over a

significant range of pressures, that the relationship between the shock and particle velocity can often

be fit by a straight line, as in

us = C. + S uP.

Thus,

ph -P. P, (C. +SISU u



and from continuity, panicle velocity may be determined as

U ,wherer = 1-p 0 p.
I 1-rnS

Particle velocity may be eliminated from these equations to give

: 2-'

P. C.o 1ph -P.
(1 S) 2

Expressing this in compression form gives:

P" C L(I + V&)
i ~ ( S -1) 11) 2

It can be seen, for S > 1, that this linear U, - up llugoniot equation approaches infinite pressure at

finite compression (t I/[S - 1]), not unlike the ideal gas EOS. Otherwise, for S < 1, the Hlugoniot

pressure converges to p Co2/(S " 1)2 for large I. Also, the special case of S = 0 reduces to the

previously derived situation of constant sound speed. This finite limiting pressure for S < I arises

because the U. function intersects the up function at U, = Cj(1 - S). Since U, must always exceed up,

these limiting values of U, and u, cause the limiting value in pressure too. Though this U, =u

condition is unrealistic, apparently several materials exhibit S < I at lower compressions (Kohn 1969).

Such data can be misleading, and can cause problems if S < I is retained out to larger compressions in

numerical simulations.

7.4 The Polynomial Hugoniot. Often, a form is not assumed on the U, - u relation, or the

compressibility at all, but rather, an empirical fit is made directly to the Hugoniot, as in

p,,-, PO K, V' ,

where Ki are the empirical constants, and n is the order of the polynomial fit. A popular value

for n is three, giving a cubic fit. Note the functionally different forms between this lugoniot form

and the linear U. - up form, for instance. To work the problem in reverse, and obtain the shock

velocity for a cubic Hfugoniot fit, for example, one can manipulate continuity and momentum

equations to get:

12



[K1 (K1 + K) ~ ( 2 +K 3 ) p2 + K3 113] Ip

Note that U ' at g = 0. which is C. 2 , cquals K,/P,.

8. THE IMPORTANCE OF DISTURBANCE VELOCITY ON NUMERICAL STABILITY

Tht, primary emphasis in describing the shock !oading behavior of materials has been on the

ttugoniot fit itself, the Ph VS. gX relation. However, the importance of the disturbance speeds U,

and C i.e.. the shock velocity and local sound speed) cannot be underestimated. In impact

computations, where the wave motions are the important part of the problem solution, knowledge of

disturbance velocities becomes necessary for accuracy, and in explicit schemes, for stability, of the

calculation.

In explicit integration schemes, which arc by far the most prevalent in use for impact calculations,
stability requirements place limitations on the integration timestep. In particular, the explicit

integration timestep must be limited so that a disturbance can traverse no more than a single

computational zone per integration cycle. To enforce this requirement, one needs knowledge of both

the particular zone size in question and the disturbance velocity in that computational zone. The

former is simply a function of zone geometry, while the latter is the shock velocity U, when the

material is compressing, and the sound speed C, when the material is expanding. Thus, an accurate

knowledge of disturbance velocities U and C, under various states of loading, is vital to the numerical

stability of explicit integration schemes.

In addition to the effect of the disturbance velocities on the stability of the explicit numerical

integration scheme, these velocities are intimately related to the stability of the EOS calculation itself,
even in the absence of a numerical code application. There are thermodynamic considerations which

must be satisfied by any valid EOS.

Three particular modes of EOS instability will be addressed in the following sections. Stated in
English. these stability criteria sound almost trivial, since they immediately result from fundamental

thermodynamic statements, which have been known and professed for years. Nonetheless, these

13



criteria, which can be expressed mathematically, and are tested in the framework of the Mie-Grnneisen

EOS, show a necessary interrelation amongst various EOS parameters, which is not commonly

appreciated. As such, indiscriminate choice of parameters to drive the EOS will often cause at least

one of these criteria to be violated. Use of such data in a numerical scheme can result in bizzarre

manifestations of numerical instability.

The three stability criteria are given below and apply to materials where phase changes and/or

porosity are not considered (i.e., simple substances). For the first two criteria, consider a state (p, v),

which lies on the Hugoniot originating from the state (p0, v0).

(1) at the state (p, v), the slope of the Hugoniot with respect to density must exceed the slope of

the Rayleigh line connecting states (p., v.) and (p, v);

(II) at the state (p, v), the slope of the isentrope must lie between the slope of the Hugoniot, and

the slope of the Rayleigh line connecting states (p0 , v.) and (p, v);

(IIl) the slope of an isentrope with respect to density is always greater than zero.

From the second law of thermodynamics, it is known that entropy is monotonically increasing along a

Hugoniot. By definition, entropy is constant along an isentrope. Finally, a Rayleigh line is known to

have one point of maximum entropy. It can be shown (Zuker 1977) that this point of maximum

entropy lies between the states (p., v,) and (p, v). Thus, at the state (p, v) and traveling in the

direction of increasing density, entropy must be decreasing. Criteria I and II express this relational

placement of the Rayleigh line, the isentrope and the Hugoniot. Criterion III simply implies the

obvious, that the speed of sound in a material is a positive quantity.

9. MODE I INSTABILITY OF SEVERAL HUGONIOT FORMS

It was mentioned that a Hugoniot has the slope (with respect to density p or compression g.) of the

isentrope only at tie end point of the Hugoniot. At other points along the Hugoniot, the Hugoniot will

always be steeper than the corresponding isentrope. Let us examine the two most popular Hugoniot

forms (linear U, - UP fit and cubic fit) to check their adherence to these rules. The slope of the

14



Hugoniot at any point on the Hugoniot is simply dpdp. Total derivatives are used since, along the

Hugoniot, pressure is only a function of a single variable (p, i, or v, at the discretion of the user). To

determine thc slope of the iscntrope at that point, one can make use of the definition that dp/lp ,

equals the square of the sonic velocity.

For the case of the linear U, - up lit, recall that

2
ph - PO- (1 -(S-1)g) 2

Taking the derivative with respect to i, one may obtain

dp poC, I - (S - 1) pl
dp [I (S - 1)

The chain rule dictates that dph/dp = dp,/dt dwi/dp. where dlpdp is simply I/p0, so that

dph C2 [1 +(S+ 1)]
dp [I - (S- 1) 111,

Without knowing additional information about the EOS, the slope of the post shock isentrope

apIap I = C2, and, thus. the sonic velocity C, cannot be explicitly determined after a shock.

However, the particle vclocity relative to the stationary shock front after a shock, equal to (U, - u), is

known to be subsonic. It may also be shown that o~p/,p along the Rayleigh line connecting the pre-

and post-shocked states exactly equals (U, - ud . If the Hugoniot slope is larger than the slope of the

actual isentrope, then clearly its slope must be larger than that of the Rayleigh line, which represents

the lower bound on the slope of the isentrope.

From continuity, the quantity (U, - u) may be expressed either as U,/(l + gt) or u.. Thus, the

slope of the isentrope .)p/ap I, = C2 mu.;t be greater thn U, 2/(l + I)2, which is the slope of the

Rayleigh line. Now, consider the Rayleigh line slope at some point on the Hugoniot. For the linear

U, - up assumption, U, : C0 + S up. However, it is desired to obtain U, in terms of compression I.
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Elimination of up from the continuity equation gives,

Up (U, -oQ/ S
u- up U= -(U,-C.)/S

Upon solution for U,

U. C'(1 +P
[ (-(s-1) P]

Thus, )p/ap IR = U2/(l + g)2 and is given as

ap -_ c.p . 11- (S-_1) p]2

For the Hugoniot slope to exceed the corresponding Rayleigh line slope for all g > 0, the ratio of

dph/dp to ap/p R must always exceed unity. Failure to do so implies that there can exist no valid

equation of state to describe the material. We will call Hugoniots whose slope does not exceed that of

the corresponding Rayleigh line, as Mode I unstable. Mathematically, the condition is stated below:

MODE I CRITERION:

dp~/dp > 1, for p > 0, along the Hugoniot.
ap/ap I=

For the linear U. - uP form, the stability ratio, which must exceed unity, is given by

dp=tdp [ +(S+I)pJ > 1, for g > O, along the Hugoniot.

aplapl, [ -(S-IJ

Clearly, for any S greater than zero, the stability criterion is not violated. Thus, the linear U. - UP

formulation is always Mode I stable.

16



Considering now the cubic empirical Hugoniot fit, it is of interest to see how this Hugoniot form

fares with the Mode I stability criterion. Mimicking the operations performed on the U, - up forms,

dm/dp is determined as

dph-a;- = K + 2K2I+ 3K3?&2]/ p

The slope of the Rayleigh line. p/ap I R equals U, 2/(1 + .) 2 , and is given by

ap I K, + (K, + K2 ) I + (K2 + K3 ) P 2 + K3 I 3

pIt p, (1 + p)2

Finally. the Mode I stability criterion, which insures that the slope of the Hugoniot exceeds that of the

Rayleigh line connecting the pre- and post-shocked states, is given as

dph/dp _ (K, + 2K2 p + 3K3 i 2) (1 + I) 2  >1

aplapI, K, + (K 1 + K2) P + (K2 + K,) P2 + K3 p3

for g > 0, along the Hugoniot. Because of the dependence of this term on three independent

parameters, a simple answer cannot be given. However, the data collected and fit by Kohn (1969) into

KI, K2, K3 form can still be checked for slope violations. It was found that 21 of 77, or 27%, of the

materials violated the criterion in part of the compression range where the empirical fit was supposedly

valid. Perhaps this behavior can be attributed to the forcing of a cubic Hugoniot function onto a

highly non-linear material response, possibly due to phase changes. In such cases, Mode I instability

implies that a cubic Hugoniot fit is inadequate. The ramifications of Mode I instability on

computational stability are no: as clear as the other modes to be discussed, where instability is more

likely to guarantee computational catastrophe.

10. IN'TRODUCTION TO THE MIE-GRONEISEN EQUATION OF STATE

Traditionally, an EOS is an equation which describes the pressure of a material as a function of

density and temperature. It is needed to solve the continuity, momentum, and energy equations which

govern the thermodynamic transition of a material. In the case of impact though, thermodynamic
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states change so rapidly that there is little time for heat transfer. Under these conditions of adiabatic

transition, the energy cquation need not explicitly contain temperature, and the governing equations

may be solved if either the entropy or the internal energy is known as a function of pressure and

density (Zeldovich and Razier 1966). The Mie-Griineisen EOS is of this variety, in that internal

energy, and not temperature, is related to pressure and density. The penalty for not having the

traditional p (p, T) formi lation is that temperature is not a computable state variable.

For impact calculations, accurate description of shock transition states is very important.

Additionally, high pressure material data are usually obtained from shock transition experiments and is

given in the form of a Hugoniot curve. The flugoniot provides the means to ascertain the pressure

and internal energy as a function of compression for those thermodynamic states which can be

achieved through shock compression of a material.

Thus, realizing tha! an EOS is only an approximation to the actual behavior of a material, it seems

desirable to have an EOS which is very accurate along the path where data are available (i.e., along

the experimentally derived Hugoniot). State points other than those found directly on the Hugoniot are

obtained from an EOS which references material back to the state along this reference Hugoniot. The

Mic-Grilneisen EOS provides the framework through which state points can be tied back to an

arbitrary reference function, as described below.

Consider the textbook form of the Mic-Grilncisen EOS (McQuarrie 1976), expressed in terms of

density

P - p 2 dU + rp(E-U),
dp

where U is the specific interatomic potential energy (a function of density only), and E is the specific

internal energy comprised of both interatomic potential (i.e., compressive) energy and atomic

vibrational (i.e., thermal) energy. Note that the term p2 dU/dp represents the "cold pressure." which is

that pressure arising from compression at absolute zero temperature, in the absence of specific

vibrational intcmal energy (E-U). The term r is the Grlnciscn coefficient, which Is a function of

density only, derived by assuming a particular form on the vibrational frequencies or the crystal lattice.

If the cold pressure curve is known (or assumed), ,nd if the thermodynamic states a known

along another reference curve (e.g.. Ihe IHugonlot), then the Grolnciscn coefficient may be Inkrred
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directly, :as a function of density. On the other hand, if the thermodynamic states arc known only

along a "non-cold" reference curve, but if a functional relationship is assumed foi the Grtinciscn

coefficient, then the interatomic potential function may be implicitly removed, by referencing the

thermodynamic state at any point (p. p, E) back to the state along the referencc curve, at the same

density (Wf' p. E,cf). This is done by taking the difference of the Mie-Griineisen EOS, given above,

at the two state points in question. It is this approach which is almost universally adopted by

hydrocodes, to give

(p - p,,) = r p (E - Er,).

It should be noted that the interatomic potential, U, and thus the cold pressure curve, may be

recovered, by solving the following non-linear ordinary differential equation:

dU ru = (p)
dp p p2

where 0(p) is a function of density only. obtained from the "non-cold" reference curve and the

assumed Grincisen function:

(p) =p,,- rpE.

For the present purposes, the reference function is chosen as the Hugoniot, so that the Mic-Gruincisen

EOS becomes

(p - P) = F p (E -E).

The quantities ph and Eh are the pressure and specific internal energy of the reference Hugoniot state

point at the same density as the state (p, p, E) in question. Often, the shock energy equation is

substituted directly into the Mic-Griincisen EOS to give

p -- p,(o -rg12) + p,r (1 + p) [E - E,] - porp12.

The ambient conditions p0. E.. are generally pegged at zero, so that the Mie-Grineisen EOS, with

Hugoniot reference, is expressed as

P p (- rpl2) + p*r (I + p) E.
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Note, in an analogous fashion to thc Mic-GrUnciscn EOS, that ideal gas behavior may be modeled

if Iap) , given by r for solids, is held constant for gases, equal to (y - 1), and if the Hugoniot
p aEr[

form is that for an ideal gas; namely,

At -P, 2y I
P, 2-(y-1)IL

The Mie-Grunesien EOS, with Hugoniot reference, is only valid where the Hugoniot reference is

valid. If the reference Hugoniot is obtained by shocking material from ambient conditions, then

clcarly the Hugoniot is only valid in some region g > 0. Hydrocode implemcntors often fail to deal

with this fact accurately. It is well known that the Hugoniot curve is a very close approximation to

the isentrope at small values of compression, and so the pressure reference function usually employed

by hydrocodes in tension is the isentrope, which is generally approximated by a curve which matches

value and slope of the Hugoniot at g± = 0. There is nothing wrong with this assumption, but

innaccuracies are introduced when the shock energy equation is still employed directly to compute the

energy reference function, as in EPIC (Johnson, Colby, and Vavrick 1978), which is tantamount to

assuming the existence of a tensile shock.

Clearly, the energy reference function to drive the Mie-Griincisen EOS in tension should not be

the shock energy equation

EL -E, - P~v(whL po. ),
2 p°(1 + p)

but rather some physically plausible function-for instance, the isentropic expansion integral of work:

I

oV p° E. f p,)

One possible approximation for the iscntropic release function for It < 0 is to assume constant

compressibility. In this case, where p, = E, = 0 is assumed for simplicity.
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pr=K, L, and

Ee --foP __o__ _) - (K/p,) [In (I i) -p/(1 - p)]

Comparing the internal energy from this reference function to that computed from the invalid

application of the shock energy equation in the tensile region, given by

E 2. - 2 I

one may obser-e that thc difference in computcd internal energies is significant, as shown in Table 1.

TABLE I. Comparing Internal Energies Resulting From Constant
Compressibility "Isentropic" and "Tensile Shock" Expansions

Sp. E/Ko p. Eh/Ko
VV (isentropic) (tensile shock) % Error

0.0 1.00 0. 0. 0.

-.2 1.25 0.027 0.025 -7.4
-.4 1.67 (.156 0.133 -14.7
-.6 2.50 0.584 0.450 -23.1
-.S 5.00 2.39 1.60 -33.1

Other reasonablc choices of isentropic release pressure reference functions may also be used in the

rcgion .t < 0. For example, let the reference sound speed for a material in tension (g < 0) be

described with the following function:

C v C,(1 * ,.

For this particular sound speed reference function, the tangent bulk modulus may be computed as

K = K. (I + p)14")
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This function has many nice properties. Two such advantages are that it reduces to constant

compressibility for g = -1/2, and to constant sound speed for g = 0. Additionally, the sonic velocity is

at the proper value at .= 0 and, for g greater than zero, the sonic velocity drops off to zero when the

material is infinitely expanded (at g = -1). Increasing the exponent g causes the sonic velocity to drop

off more rapidly in tension and will limit the maximum value of tension achievable during an

isentropic expansion, which is a material feature observed experimentally and often modeled

computationally by way of a pin parameter. The reference pressure function is acquired by

integrating the tangent bulk modulus and is given below for g not equal to (-1/2):

,, K = _ [(1 1].
f (1 + p) 2  (2g + 2)

The reference energy function (for g not equal to -1/2) is acquired by integrating the reference pressure

function:

.E [(1 f -,). K_ 11 - it (2g + 2)
0 P.0l - p.) (2g - 2) (2g + 1) (1 * pt)

For the special case of constant sound speed adiabatic expansion from . = 0, the exponent g equals 0,

and one gets:

p, - K°(i + 2 )/2 , and

W - 2p, (lI )

On the other hand, the reference pressure may be limited to a tensile pressure of Pmin, which occurs at

infinite expansion, by defining the exponent g to be

9 K°
2 I&1 .
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Using steel, as an example, where K. = 1.380 kbar, and Pmin = -35 kbar, g takes on a value in the

vicinity of 19. For aluminum, where K, = 700 kbar, and Pmin = -10 kbar, the value g takes is

approximately 34. Table 2 depicts the paramcter relationships for g = 20.

TABLE 2. Values of Compression, Relative Volume, and Normalized Values of Sonic
Velocity, Pressure, Tangent Bulk Modulus, and Secant Bulk Modulus, Respectively,
for the Proposed Tension Limiting Model, With g = 20

T V/V0  C/Co PrcPmn K/Ko P/K0 p

0.00 1.00 1.000 0.000 1.000 N/A
-.002 1.002 .961 .081 .921 .960
-.02 1.02 .668 .572 .437 .681
-.04 1.04 .442 .820 .188 .488
-.06 1.06 .290 .926 .079 .367
-.08 1.19 .189 .970 .033 .289
-.10 1.11 .122 .988 .013 .235

11. THE GRONEISEN PARAMETER

The Gruneiscn parameter F is an important parameter used by the Mie-Grilneisen EOS. Though

the assumption that F is a function of volume only is only an approximation, the parameter itself is

not empirical but in fact carries physical significance. For ideal gases, the parameter analogous to F

has been shown to be (y - 1). For solids, the parameter also has meaning.

To compuite its value, consider a cube of material at state I characterized by pressure p and

volume V. Let the material undergo a two-stage thermodynamic process. First, add heat dQ at

constant pressure in order to go to state 2, characterized by p, V + dV. Finally, and with no heat

addition, isentropically compress the material back to its original volume in order to arrivc at state 3,

characterized by p + dp, V.

During the process 1-2, the cube of material, the length of whose side was originally L, expands

so that the length is now L ( + adT), where a is the coefficient of linear expansion. Thus, the

relative volume change dV/V is given by 3WET. The amount of heat added per unit mass dQ. is
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Cr dT. For solids, which are nearly incompressible in comparison to gases, the specific heats at

constant pressure and volume, cp, and c, are nearly identical. Thus, the heat added can be

approximated by c, dT. The temperature change dT may be eliminated by relating dT back to volume

change dV so that

c dV
dQ=--

3acV

The work done by the material per unit mass is negative since the volume change is the opposite sense

of the pressure loads and is given by dW = -p dV/(pV). From the first law of thermodynamics, the

internal energy change dE, given by dQ - dW. can be expressed as

dE cdV pdV
3aV pV

The process from state 2 to 3 has no heat addition, so dQ = 0. The work done by the system is

dW = (p + dp/2) dV/(pV) which, to the first order, is p dV/(pV). The rise in internal energy is

therefore the negative of the work

p (-dV)
| pV

Thus, the difference betwecn the pressures going from state I to 3 is dp, and the rise in internal

energy is

c,,dV
dE13 = 3d

The volume of states I and 3 are identical, so that the Gninciscn parameter r will remain constant for

the direct transition from state I to 3. when using the Mie-Grfnciscn EOS, which relates states I and 3

as follows:

---r p --

- (dV) 3aV
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But path 23 is isentropic, so that dp/(-dV) is )p/aV I, = (-p/V) op/lap I,. But o)p/)p 1, is simply the

square of the sound speed C, or alternately, the ratio of the bulk modulus and the density K/p.

Substuting, and solving for r gives

r 3 C2  3a K
CV P CV

From the Mic-Grdnciscn EOS, it is clear that the Griinciscn parameter F relates changes in internal
energy to changes in pressure at constant volume. As can be seen from the dimensional analysis of

the second expression for F which follows, the numerator expresses the pressure rise per increment of

temperature, while the denominator expresses the (volume-based) energy rise per increment of

temperature. These terms combine in a way to produce a non-dimensional expression which

represents the Gnineiscn parameter.

dV V dp
r-3aK deg dVIV dpldeg dp _

pc dE p dEldeg pdE

Note: As in other places in this document, dE represents energy change per unit mass.

12. MODE II INSTABILITY OF THE MIE-GRONEISEN EQUATION OF STATE

Though there is nothing inherently wrong with the Mic-Griineisen EOS, there are often situations

where inappropriate choice of data forces a thermodynamic violation. As pointed out in the previous

section dealing with Mode I instability, there are certain empirical Hugoniot fits which may violate

fundamental thermodynamic rules. Clearly, plugging such fits into Mie-Grilneiscn makes the

possibility of catastrophic EOS failure significant. Additionally, there are inconsistent combinations of

flugoniot and Grilneiscn functions which cause thermodynamic violations which arm not immediately

apparent.

To study these, consider a material in the state P. p, Eb on the Hugoniot originating at (p,. v).

From this state, consider two possible paths resulting from a small compressive increment, dp: the
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path along the isentrope and also the path along the Hugoniot. Along the isentropic path, the pressure

change is

ap dp - C dp.

The internal energy change along the same path is the negative of the work, or

dp = p, (dp/p 2 )
ap

Along the Hugoniot, the pressure change is simply (dph,/dp) dp, and the energy change, may be

obtaincd by taking the derivative of the shock energy relation Eh - E, = 1/2 (ph + po) (l/P " l/p),

to get

dE

If is ateialist dpyteMeGnic Othna h est p
dp 1/2 [(Ph +Po/]P - (1/p0 - l/p) dpAldp] dp

If tl's material is to obey the Mic-Grilncisen EOS, then at the density p + dp.

ph+ dp (Ph +p rdPh do  = rP + I, dp -(E, +. dp)j.

Canceling and substituting terms gives

(Ca - dphidp) = r p (ph/p 2 - 1/2 [(Ph + p)1p2 + (i/p. -/p) dp,,Idp]).

Expressing this in terms of compression .t, and solving for r gives

r 2 [, Ii dh)'. -, po0C21
p. [ Ii dphfdp - (ph p)I(l -p) p)]
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The signi ficance of this expression is that, for a given Hugoniot relationship ph as a function of i, the

Gruneiscn coefficient r and the sound speed C arm related. Since the sound speed is known to have

thermodynamic limitations placed upon it. these limitations translate into constraints on the Gnineiscn

parameter F. Use of the Mie-Grincisen EOS in codes, without the appropriate restraints on r, will

usually result in catastrophic failure of the EOS.

To examine these constraints on F. consider the maximum and minimum possible values on C.

Recall that tie post shock particle velocity relative to the shock front, cqual 1o (U, - U), is known to

be subsonic, but approaches sonic conditions for infinitesimal shocks. Thus, as an absolute lower

bound, let C approach (U, - Up. This choice of C gives an upper bound on F. But (U, - u) equals

U,/(l + Ig), so that (U, - ud)2 is given by

(U,- -_,/(1+ (I + (P, -P/[P. V (I +

Substituting this into the expression for F gives, as an upper bound,

r = 2/px

For the lower bound on r, one may assume that the isentrope approaches the HugonioL In this case,

a)p/d. I = dp/dg. Since )p/j. 1, equals p. C2 by definition, the minimum value on I may be

determined as zero. By combining these two criteria, and calling them the Mode II stability criterion,

one gets

MODE I! CRITERION:

o < r < (2/p)

Failure to satisfy this criterion implies that the slope of the post shock iscntopc does not fall

between that of the Raylcigh! line and the Hugoniot.

Recall, from the ideal gas form, that the parameter analogous to F is constant, and equal to

(y - 1). It may at first appear that the ideal gas form violates he Mode H stability criterion for lage I.

However. recall that Infinite pressure was approached when the ideal gas compmssion pt equaled
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2/(7 - 1). which is 2/F in Mie-Grilneisen terms. Thus, over the physical . domain of tile ideal gas

form, which is g. < 21T, Mode II stability is not violatcd.

In general though, it becomes clear that the terminal value of tie GrUneisen coefficient, let us call

it F,, must be less than or equal to 2/ga1, where Va, is defined as that value of compression which

produces infinite pressure in the Ilugoniot. For the linear Us - uP form, It, occurs when the

denominator (1 - (S - 1) gt) becomes zero, which occurs only if S exceeds unity. In this case,

'a I - (S- 1).

The value of I,, therefore, should be less than or equal to 2(S - 1). For S 1 1, the linear U, - u

form becomes unbounded only as It approaches the infinite. In this case, F must approach zero.

Similarly, for polynomial fit Hugoniots, shock pressure becomes unbounded only when compression

approaches infinity. Thus, the Gruneisen coefficient F should also approach zero, all the while

remaining less than 2/g., as compressions become very large.

It is unfortunate that data for r are generally only available at the ambient gx = 0 condition. As a

result of this, it has been common practice to leave the value of F constant in numerical computations

for lack of better data. In analyzing the data of Kohn (1969). it is observed that none of the data

presented violate the Mode II stability criterion, 0 < r < 2/pg, for the range of i over which the data

are collected. However, should the data be extrapolated to larger values of It, Mode II instabilities

may result, since 100% of the cubic fits, and 74.5% of the linear U, - up fits described by Kohn

(1969) will violate Mode 11 stability at larger p. if r is held constant at its initial value.

13. CORRECTIONS FOR MODE II INSTABILITY

To enhance Mode 1I stability, some code developers have imposed functional forms on the

Gruneisen coefficient. In the case of the EPIC codes, this is not done, and r is held constant at Fo.

As pointed out, Mode ii criterion will be violated for p > 2/1"o. In HULL (Matuska and Osbom

1987), the value of F is a defined as r = 17 pjp, which in terms of compression p, is
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r = ro/( + P).

This form can still violatc the Modc II criterion if F. > 2 and g > 2/(10 - 2). DYNA (Hallquist

1989). as well as vcrsions of CALE (Tipton 1989), use a first order correction to r o, which is

cquivalcnt to assuming the form on the GrUncisen parameter as

r = (ro+Ap)I(l + p)

where A is a paramctcr which, when fit to EOS data at moderate pressures, is always greater than or

equal to zero and generally lics in the vicinity of 0.5 for most metals (Tipton 1989). If the value of A

is chosen as zero, the DYNA/CALE form for r reduces into that used by HULL. Even though a

positive value for the parameter A might cause the data to fit better at the pressures of interest, it also

has the side effect of lessening stability at larger compression. If A is positive, the limits on

compression which assure Modc II stability are

(2 - To) + 1(2 - r,) 2 + 8 A A > 0.

2A

For materials like aluminum, with r = 2.09 and A = 0.49, the DYNA/CALE Grilnciscn form has a

limiting compression of stability near 2. This value is better than the limiting value of unity, derived

from the constant P = 2 assumption, but is still prone to failure when simulating hypcrvclocity impact.

MESA (Bolstad 1990) uses a form:

r =y + y1/(1 + p)

which is directly convertable into the CALE version, if one takes 10 = (7o + y1) and A = T. Thus,

the arguments made about the CALE form apply to MESA as well.

From the pcrspectivc of assuring Modc If stability, evcn at very large compressions, an altcrnatc

Grilmniscn form, being proposed here is given as follows:
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r- ro0

1 + j3ji

where 13 is the newly introduced parameter. Unlike the other forms on F. where stability is a

coincidental by-product of the choice of F., Modc ii stability can always be ensured, with the current

form, given appropriate choice of 13. The form reduces to that used by HULL if 13 is forced to unity

and can be made to approach constant F if [3 equals 0. However, constraining 13 to a value greater

than or equal to 1-J2 will ensure, for any Hugoniot form, that Mode II stability is always satisfied for

any finite g.. The constraint on 13 can be relaxed somewhat if the associated Hugoniot form is valid

only in some finite range 0 < p. < p, An example of such a limited domain Hugoniot is the U, -u

form, with S > 1, where 1-x = l/(S - 1). For these cases, the constraint on 13, to ensure Mode II

stability, is

r, - (21 p,,)

2

To see how this proposed form can match the DYNA/CALE form at lower compressions but still

provide stability at higher compressions, Figure 2 is provided. In it, three Griineisen relationships for

aluminum are shown (data for aluminum, I. = 2.09, and S = 1.33 are extracted from Kohn [1969]).

The A = .49 (CALE) curve shows the functional form of F, using the DYNA/CALE functional form.

The value of A = .49 comes directly from the CALE manual (Tipton 1989) and was fitted from

experimental data. At large compressions (in excess of 2), the CALE Grfneisen form violates Mode II

stability. The A = 0 (HULL) curve shows the DYNA/CALE curve for A = 0, which reduces into the

form used by HULL. This form remains stable out to the limit compression, ., = 3, but does not

follow the CALE curve well at lesser compressions, where experimental data were used to fit the A

parameter. Thc 1 = .72 curve, which follows the functional form of the currently proposed model,

follows the CALE curve well at lower compressions, and retains stability out to the limit compression.

Notice that the minimum value of 1, which is guaranteed to retain stability, can be obtained by

substituting FQ = 2.09 and p 1 = 1/(1.33 - 1) = 3 into the equation above. This minimum value is

computed as 0.712, which thus guided the selection of 1 = .72 for the figure.
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Note that some non-positive values of f0 are permissable. but only if 17 < 2/g', is. true. For a

polynomial llugoniot fit. where it, is ncessarily infinitc, f3 is necessarily positive. One can combine

the 0 constraint directly with the proposed r relation to obtain th re .ation in terms of r,, ji. and li:

2 r.
2 + (r. - 211p,) lIi

14. MODE III INSTABILITY USING TIHE MIE-GRUNEISEN EQUATION OF STATE

Mode III instability arises. when the square of the local speed of sound is computed as negative-

a situation which clearly bears no relation to any real phenomenon. In the Mie-Griineisen EOS, it can

arise, because of the fact that the EOS is linearized about some reference curve, which is the

Hugoniot, for impact computations. Since the real world is rarely linear, this idealized linearization

becomes Icss and less accurate the further one gets from the reference curve. When one gets suitably

distant from the reference curve, the thermodynamic data generated from a linearized EOS can be not

only inaccurate but also in violation of basic thermodynamic principles.

When the situation of imaginary sound speed occurs, many codes (EPIC3, for example) reset their

value to zero and merrily continue on their computational way. Unfortunately, the situation can be

much more serious than just computing an inaccurate sonic velocity. An imaginary sonic velocity

implies that an increment of isentropic compression on an element will result in a DECREASE in

pmcssure. Rectting the sonic veloity to zero does nouthing to prcvcnt thc ihemnodynamic state of the

element from going berserk. It is these sorts of situations which most often result in catastrophic

manifestations of instability over the span of one or several computational iterations--ballooning

elements, collapsing elements, and wild energy fluxes are typical.

The local speed of sound is defined as the rate at which an infinitesimal disturbance propagates

through a medium. Expressed by the symbol "C". it is mathematically expressed as:

apap
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To derive its functional form for the Mie-Grlneisen EOS.

p-ph= rp(E-E))

take the derivative with respect to an increment of density (dp) along the isentrope. This produces the

following result:

ap - dp r p a, - (E -E ) (1'P)
ape dp Tp dp )dp

Converting the derivatives into compr.ssion form, this relation may be ultimately simplified, with

energy terms eliminated, to produce the result:

MODE III CRITERION:

C2 r+I I r ) dI. r/D k .

For the special case of p Ph (i.e., along the Hugoniot), this form expresses the relationship derived

for F in Section XI,

2 [pdpId - pp.C']
pt [jtdpj,1dpt-(pA,-p.)j(1 + .)1

which was subsequently used to derive the Mode II criterion. Note, however, that Mode III only

requires the sound speed to be positive at all thermodynamic states, whereas Mode 1I required the

slope of the iscntropc (which is directly related to the sound speed) to be not only positive but

greater than the Rayleigh line slope. Thus, the Mode i criterion is more stringent than Mode !II, but

it only applies along a Hugoniot.

Thus. if the Mode Ill criterion is violated at some state, which happens to lie on the Hugoniot

(Ph, I) then the Mode II criterion will have already been violated at that compression it. However,
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the full Mode IIl criterion gives the opportunity to study stability at all states in the (p. v) or (p, jt)

plane, not just along the Ilugoniot.

Operational simplitications may be possible when applying the Mode III criterion, depending on

the actual choices of the ph and F functions. As an example, if one adopts the functional form for the

Grncisen cocflicient proposcd in Section XII, F = 1,(I + I3.), then the Grtonciscn derivative terms

simplify nicely:

r1 dr r, l+1

Because of the linearized nature of Mie-Grdneisen, there can be states where Mode III stability is

violated However, their occuruace can be greatly rcduced, given an appropriate choice of Ph and r
functions. As an example, consider Figure 3, which depicts the (p, v) plane cubic fit Hugoniot for

aluminum with coefficients .79903, 1.13927, and 1.39792 Mbar, respectively, and density of 2.7 g/cm 3

as given in Kohn (1969). if F is held constant at its initial value of 2,09, co.responding to 3 = 0 in

the cuterr.tly proposed model, the Mode Ill stability line, which divides the (p, v) plane into stable and

unstable regions. is seen to produce instability in a large part of the (p, v) plane, including

thermodynamic states in which the simulation might reasonably expect to exist. Note that an

isentrope, when it crosses into the unstable region of the (p, v) plane, changes its slope so that

increased compressions actually cause a decrease in pressure. It is this sort of unstable behavior which

will cause a simulation to come screeching to a halt in no time at all.

On the other hand, if 3 is increased to a value which guarantees Mode I1 stability, as discussed in

the previous section, Mode IIl stability is also greatly enhanced. Since a cubic fit Hlugoniot has no

lim;ting vdue of compression, the value of 03 to guarantee Mode I! sLability must equal or exceed

1'/2, which for the case in point (r. = 2.09), is 1.045. With this new value of P, shown in Figure 4,

the unstable region is limited to a very small portion of the (p, v) plane, which represents material

under very large tensions. In fact, the tensions required to produce instability are so large (391 kbar

at v = v., for the case in point), that aluminum's spall pressure would be. exceeded and material failure

would occur before the material was ever able to approach this unstable thermodynamic state.
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Figre 3I Depiction of Aluminum (p. 2.7) Hugoniot. Isentrope. and Mode M1 Staibi~ty Regtion
for Constant Grifeisen Parameter r = 2,09 (ft = 0). Hug2niot Is a Cobic Fit. With
Parameters 73. 1. 13927, and 1.39792 Mbar. Respectively.
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Figure 4. Depiction of Aluminum (o 2.7) Huonjot. Iscntrovec. and Mode II1 Stablility Reionl
for Variable Gr~neisen Prmeter B = 1.045). Huoniot Is a Cubic Fit. With Parametcrs,
.79903. 1.13927. and 1.39792 Mbar. ResLectively.

36



15. OTHER PROBLEMS WITH MIE-GRONEISEN EOS IMPLEMENTATIONS

Movement of nodes along Lagrangian contact surfaces may produce occasional values of

compression in excess of that anticipated from analytical considerations. Though such artifacts are

purely computational, they can cause the compression to go out of (p, v) domain of known data or,

worse yet, out of the physically plausible (p. v) domain. When this happens, the code may die

instaotly or generate state values so inaccurate as to cause computational "ripples" which disturb the

rest of the otherwise valid computation. This problem can usually be circumvented by forcing a

smaller intcgration timestep on the computation or, alternately, by using an EOS formulation which

remains physical out to larger values of compression.

16. CONCLUSIONS

A review of fundamental shock-transition theory was presented. The equation of state was

introduced as an analytical vehicle to express material pressure as a function of density and

temperature (or internal energy in the case of adiabatic transition). The importance of thermodynamic

principles was emphasized as a tool to study the stability of various EOS implementations. The

Mie-Griineisen EOS, with a Hugoniot reference function, was singled out for study because of its

relative importance in the computational modeling of shock transition.

Starting from the fundamental laws of thermodynamics, three criteria were developed to measure

the stability of equations of state and were applied specifically to the Mie-Griineisen EOS, with

Hugoniot reference, to investigate the stability characteristics thereof. Results indicate numerous

possibilities of instability under various circumstances. Circumstances which could bring on the

investigated instabilities included: 1) an improperly formulated EOS; 2) the choice of improper data

for an otherwise suitable EOS; 3) the application of given EOS data beyond the thermodynamic region

for which the data were originally intended; and 4) the assumption of parameter constancy when

additional data were not readily available. Several sources of published material data and Hugoniot

forms were investigated for stability. Instability was observed in these data, especially so under

conditions where the applied compression was greater than that for which the data were fiL

Unfortunately, the existence in codes of "EOS material libraries" virtually guarantees the indiscriminate

use of EOS data, thus enhancing the likelihood of EOS instability.
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Based on this report's findings and the author's experience, it is believed that a significant

percentage of hydrocode computations which fail do so as a direct or indirect result of the EOS

calculation. Typical code failures (for example: negative absolute energies or pressures, exploding or

collapsing elements, and negative element stiffnesscs) are due, probably in part, if not completely, to

internal inconsistencies arising from a misapplied EOS. A basic understanding of thermodynamics and

its relationship to shock transition will permit the thoughtful code developer and user to verify, in

advance of computational solution, the validity of his data and EOS forms.
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